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SUMMARY 

A three-dimensional, primitive equation, baroclinic numerical model incorporating a range of turbulence energy 
submodels is used to study the generation of internal lee waves over an isolated seamount. Attention is given to 
the turbulence mixing enhanced by the internal lee waves. The results show that regions of strong turbulence 
energy appear over the lee side of the seamount associated with the production of the lee waves. The computed 
vertical eddy viscosity and diffusivity using turbulence models can be as large as 1 m's- '. 

A comparison of the magnitude and spatial distribution of the internal lee waves does not reveal any major 
differences in results computed using different turbulence energy models or mixing determined from a 
Richardson number formulation. However, the magnitude of the vertical mixing is sensitive to the form of 
turbulence energy submodel. Also, a study of the relevant importance of the various terms in the turbulence 
energy equation shows that the term representing the advection of turbulence needs to be retained in order to 
accurately reproduce the mixing produced by the internal lee waves. Calculations using a range of seamount 
profiles show that the magnitude of near-bed turbulence is sensitive to the shape of the seamount. 

The magnitude and spatial distribution of the lee waves and associated flow field are affected by the 
parametrization of horizontal diffusion, with significant differences between the use of Laplacian and biharmonic 
forms of horizontal diffusion. The application of biharmonic horizontal diffusion is recommended. 
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1. INTRODUCTION 

In recent years, three-dimensional shallow sea modelling has concentrated upon finer grid, limited 
area models' where bed topographic features can be accurately resolved within the model and their 
effects upon bed friction2 and circulation examined in detail. Although in these models the subgrid- 
scale vertical mixing has in many cases been parametrized using the eddy viscosity ~oefficient,~ there 
is now a trend to use higher-turbulence schemes4 to parametrize the turbulent processes associated 
with topographic features. 

In ocean circulation studies the majority of models have used large-area coarse grids with constant 
mixing coefficients. However, in recent years there has been increasing evidence that topographic 
features such as seamounts and the lee waves and mixing associated with them have an important 
effect upon the large-scale circulation. As limited area ocean circulation models with fine grids are 
developed, there is a need to examine methods to accurately model the flow and in particular the 
mixing associated with topographic features and the internal waves induced by them: the topic of this 
paper. 
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Internal lee waves are generated when a stably stratified fluid passes an obstacle.’ There has been 
significant research on internal lee waves in the atmosphere,6 generated by the stratified atmospheric 
flow over mountains, and reviews can be found in References 7 and 8. In the ocean, however, there 
has been less attention given to the possibility of internal lee waves over the bottom topography, such 
as a seamount or shelf edge, although internal waves and internal tides have been studied for many 
years. 

The scale difference between oceanic flow and atmospheric flow means that the earth’s rotation 
plays a more important role in the oceanic flow over a seamount than in the atmospheric flow over a 
mountain. In the case of internal lee waves generated in the atmospheric flow over mountains, the 
scale is often not large enough for rotation effects to be important’ (i.e. non-rotating wave regime). If 
the hydrostatic approximation is applicable and rotational effects are neglected (i.e. hydrostatic non- 
rotating regime), waves are found only above the mountain, because the group velocity propagation is 
vertical. In the ocean, however, the hydrostatic assumption is almost always valid, so the horizontal 
propagation of internal waves requires the effect of the earth’s rotation. In this situation, internal lee 
waves can only be generated when the imposed background Froude number (defined by F = UJNH,, 
where U, is the imposed mean velocity, N is the buoyancy frequency and Ho is the water depth) is 
above a critical value. 

Chapman and Haidvogel” (hereinafter CH93) have studied the possibility of the generation of 
internal lee waves in an oceanic environment. Using a primitive equation numerical model, they 
studied the generation of internal lee waves in a steady, rotating, uniformly stratified flow past an 
isolated seamount. In many cases that they examined, the imposed background Froude number was 
not large enough to generate mode 1 internal lee waves. However, they still found large-amplitude 
mode 1 internal lee waves which were trapped over the flank of the seamount where non-linear 
advection of momentum led to large local acceleration of the flow and therefore increased the local 
Froude number. According to CH93, the decay of the internal waves is due to two factors: the 
deceleration of the flow downstream of the seamount and subgrid-scale mixing. In particular, the 
deceleration of the mean flow reduces the internal wave wavelength and the resulting small- 
wavelength wave can be more rapidly dissipated by viscous effects. 

The modelling approach of CH93 was based upon using an expansion in terms of functions in the 
vertical and therefore could not take account of turbulent mixing processes which are significant in 
the lee of seamounts. Their model also had a rigid lid. Here, following the earlier work of CH93, we 
study internal lee waves over an isolated seamount with a view to examining the turbulence mixing 
produced by seamount-generated lee waves. Regions of enhanced mixing in the ocean may be 
important in determining the extent to which the ocean mixes in general, in that oceanic mixing is 
thought to occur locally in regions of sloping topography and then spread into the ocean interior (a 
recent review of oceanic mixing is given in Reference 16). Intensive local mixing regions are clearly 
important from a biological point of view, in that they can increase local nutrients.” Also, a detailed 
knowledge of regions of intense mixing is important for acoustic propagation problems.‘* 

In this paper we develop a three-dimensional, primitive equation, free surface model in transport 
form. The transport form of the equation is preferable in regions of rapidly changing topography, in 
that the product of terms such as velocity and water depth in such areas is a more gradually changing 
function than velocity alone and this improves the accuracy of the finite difference approach. The 
method of solution in the vertical involves a finite difference grid rather than the functional approach 
used in CH93. The advantage of using the finite difference method is that the model can readily 
incorporate a range of turbulence energy closure methods to compute the eddy viscosity and eddy 
diffusivity. Hence the turbulent mixing associated with the seamount can be studied using a range of 
turbulence closure methods and the importance of the various terms in the turbulence energy 
equations assessed. Also, by comparing solutions using the finite difference method with those 
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computed by CH93 using a functional approach, the accuracy of the finite difference method can be 
determined. 

The range of turbulence closure schemes applied here covers the main approaches used in 
oceanographic modelling. The computationally most intensive model uses a prognostic equation for 
both turbulence and mixing length, namely the closure of Mellor and Yamada.” This closure can be 
simplified and hence the computation reduced by using one prognostic equation for turbulence energy 
and an algebraic mixing length.” The simplest turbulence approach, and the one commonly 
employed in oceanography, is to use a Richardson-number-dependent eddy viscosity and 
diffusivity.” 

By using a range of turbulence submodels, it is possible to examine how the intensity of mixing 
depends upon the choice of model and under what conditions simpler models can yield results 
comparable with more complex models. Also, a detailed comparison of the importance of the various 
terms in the turbulence energy equations is considered in order to determine the major processes 
controlling the magnitude of mixing. The sensitivity of the model results to different formulations of 
horizontal diffbion (biharmonic form and Laplacian form) and chosen horizontal diffusion 
coefficients, as well as different seamount profiles, is also investigated. 

The mathematical formulation of the numerical model and the parameters used in the numerical 
calculations are presented in the next section. Section 3 deals with the results from model 
experiments concentrating on internal lee waves and wave-enhanced turbulence mixing as well as the 
bottom flow structure over an isolated seamount with varying seamount height and slope. The last 
section of the paper contains concluding remarks. 

2. NUMERICAL MODEL AND PARAMETERS USED IN THE CALCULATIONS 

2.1. Model equations 

A three-dimensional, free surface, primitive equation model is used in this study. The model is 
based on previous work of Davies and Jones” and Xing and D a v i e ~ ’ ~ . ~ ~  and uses a topography- 
following co-ordinate o = ([ + z)/H. The model equations, with conventional Boussinesq and 
hydrostatic approximations, in transport form using a-co-ordinates in the vertical are given by 

(1) 
aHu aHuw a i  
__ + V * (HuV) + - -fHv = -gH - + BPF, + at aa ax 

’+ at v * (I:, (HV) do) = 0, 

-+ V (Hi”) + - - - -- a ( aHT) + m , ,  
aHT aHTw 

at aa H2ao K h ~  

(3) 

(4) 
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Here V = (u ,  v) and (u ,  v, o) are the velocity components corresponding to the co-ordinates 
(x ,  y ,  a); p is the density; T is the temperature; c1 is the thermal expansion coefficient; To and po are 
the reference temperature and density; H is the total water depth given by H = h + [; [ is the 
elevation of the sea surface above the undisturbed level; h is the depth below the undisturbed level; z 
is the vertical co-ordinate increasing vertically upwards, with z = the free surface and z = -h the 
sea bed;fis the Coriolis parameter; g is the gravitational acceleration; t is the time; K,,, and Kh are the 
vertical eddy viscosity and diffusivity coefficients; F,, F,, and FT are the horizontal diffusion terms 
for momentum and temperature; P is the pressure field; BPF, and BPF, are the baroclinic pressure 
force terms given by 

where Pbo  is a reference baroclinic pressure or the initial baroclinic pressure field. The first terms on 
the right of (7) and (8) are the pressure forces calculated on the z-co-ordinate and thus only deviations 
of the pressure forces are calculated on the a-co-ordinate. In this way, errors due to the co-ordinate 
transformation can be reduced. 

The horizontal diffusion terms F,, F, and FT in the majority of calculations are parametrized in 
terms of a biharmonic horizontal viscous term, although in the latter part of the paper the results from 
these calculations are compared with those using the Laplacian form. Details of the various frictional 
forms are well-known’8 and will be briefly discussed later in the paper. 

We should point out that the use of a free surface model is not important in the problem considered 
in this paper and hence comparisons with the rigid lid model of CH93 are valid. This is because the 
barotropic forcing produced by changes in the free surface does not contribute to the generation of 
internal waves, which involve disturbances of the internal density surfaces. A time-splitting method is 
used to solve the model equations in order to reduce the computational time. Thus the velocity 
components u and v can be written as 

u = O + u ’ ,  v =  P + v ’ ,  

where 0 and are the depth-mean velocities (external mode) and u’ and v’ are the depth-dependent 
velocities (internal mode). Since the external mode represents fast-moving gravity waves, a small 
time step is required for the time integration of the free surface wave which involves fi and P in 
order to satisfy the CFL condition. The internal mode, however, represents slow-moving waves and 
hence much larger time steps can be used. To avoid errors in mass conservation due to the use of the 
time-splitting method, the sea surface elevation is recomputed before the internal mode equations are 
integrated by using the depth-mean velocity computed from the time mean of that determined with 
smaller time steps. The vertical velocity o is therefore calculated from 

A staggered Arakawa C finite difference grid is employed in the horizontal, with discretization in 
the vertical accomplished by a standard finite difference grid in a-co-ordinates. The vertical diffision 
terms, determined using a range of turbulence energy models, are computed by a fully implicit 
scheme. Details of the numerical method have been presented e l~ewhere~~-*~  and will not be repeated 
here. 
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2.2. Turbulence Kinetic Energy (TKE) models 

The vertical eddy viscosity and diffusivity in the model are calculated using a range of turbulence 
kinetic energy (TKE) models. In particular, we are interested in two types of TKE models: (i) a two- 
equation model which involves two prognostic equations for the turbulence energy and the length 
scale and (ii) a simpler and computationally less expensive one-equation model which involves one 
prognostic equation for the turbulence energy and a specified length scale. We are also interested in 
the contribution of each term in the equations to the turbulence energy budget. The major features of 
the models are outlined next. 

2.2.1. Two-equation (q2 - q2z) TKE model. This model, which was developed by Mellor and 
Yamada'9,26 and used by, among others, Blumberg and Mellor2' and recently by Oey and Chen28 and 
Xing and Da~ies:~ involves an equation for q2,  where q2 = 2E, with E the turbulence kinetic energy 
(TKE). In a-co-ordinates this takes the form 

aq2H aHq2w 
__ + v * (Hq2V) + at ao 

The first term on the left is the time variation of turbulence energy, with the next two terms 
representing its advection. On the right the first term represents the vertical shear production of 
turbulence energy. The second term is the suppression of turbulence due to stratification and the third 
term determines the rate of loss of turbulence energy be dissipation processes. The vertical and the 
horizontal diffusion are represented by the last two terms in the equation. The various coefficients 
used in the equation are given later. 

The equation for the length scale z in a-co-ordinates takes the form 

aHq2lw + V (Hq2 zV) + ___ 
aq2lH 

at aa 

- - "E,K, H [ (32+(;)2] 
with W a wall proximity function defined by 

2 

W = l + E 2 ( & ) ,  

where L is given by 

I5- I  = (C - $1 + ( H  + z)-' 

and IC = 0-4 is the Von Karman constant. 
The vertical eddy viscosity and eddy diffusivity are computed from 
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with S,  and SH the stability functions given by Galperin et d3' as 

A,(1 - 6A,/Bl)  s -  " - 1 - 3A,(B, 4- ~ A , ) G H  ' 

A1{1 - 3Cl - 6A,/B,  - ~ A ~ G H [ ( &  - 3A2)(1 - 6A, /B , )  - 3C,(B2 4- 6A,)]) 
[I - ~ A ~ G H ( ~ A ,  -I- B2)](1 - ~A,A,GH) s, = 9 (16) 

where GH = - i2N2/q2 is the buoyancy flux, with N the buoyancy frequency. The coefficients used in 
equations (10H16) are given by A ,  = 0.92,A2 = 0.74, B, = 10.1, C, = 0.08, S, = 0.2, B,  = 16.6 
and El = 1.33. Following Galperin et aL3' a limiting condition is applied to the length scale of the 
form 

1 < ki qlN, (17) 

where k, is a constant determined in terms of laboratory and observational data. 
The above turbulence closure model is often called the Mellor-Yamada level 2.5 model and is 

widely used in the modelling of geophysical f l ~ w . ' ~ , ~ ~  The empirical constants have mainly been 
determined from laboratory observations and appear to be valid across a range of situations, including 
ocean circulation models27 and numerical weather prediction The importance of limiting 
the mixing length using (1 7) and its influence upon the solutions are discussed in References 3 1 and 
34. 

2.2.2. One-equation TKE model. This turbulence energy closure model is similar to the two- 
equation model in concept but different in detail. It involves one prognostic equation for the TKE, 
denoted E,  and an algebraic form for the length scale L~~ The TKE equation in a-co-ordinates takes 
the form 

aHE aHEo 
~ + V * (HEV) + - 

at a0 

where f lo is a specified constant. The turbulence dissipation E and the vertical eddy viscosity or 
difhsivity (taken to be equal) are calculated from 

E = c , E ~ / , / z ,  K ,  = C0E'I2, (19) 

where Co = C1J4, C,  = Ci and C = 0.06. 

simple formulation is a trigonometric type of length scale, namely a parabola of the form 
In this one-equation model the length scale can be determined in a number of different ways. One 

1 
= 1 / 1 1  + 1/12 ' 

2, = K(H - crH + zs), (20) 

where K = 0.4 is the Von Karman constant, f l ,  is an empirical coefficient, zo is the bed roughness 
length and z, is a surface roughness length which controls the value of i at the sea surface. 

The above formulation of the TKE closure scheme including the length scale has been used in a 
number of shallow water sir nu la ti on^.^^^^ In the application in this paper, however, the length scale 
can be unreasonably large in the deep water environment. Therefore a limiting condition similar to 
(17) is applied to the length scale (20). 
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2.2.3. Eddy viscosity related to the Richardson number. In addition to the TKE models described 
above, a simple Richardson-number-dependent eddy viscosity and eddy diffisivity are also used, 
since this simple model is popular in oceanography. Following Munk and Anderson,*' the eddy 
viscosity and eddy diffusivity take the form 

K m  =Ar1$1 + B , I ,  (21) 

where and 4b2 are the Richardson-number-dependent stability functions given by 

$, = ( 1  + 10Ri)-'I2, (23) 

$2 = (1 + 3.3Ri)-312. (24) 

Here A,, , B,,, A ,  and Br2 are constants and Ri is the Richardson number defined by 

Ri = - kHlPo)(aPlaa) 
(au/aa)2 + (&v/aa)* ' 

2.3. Formulation of the horizontal digusion 

Two types of horizontal diffusion are considered here, i.e. the Laplacian form and the biharmonic 
form, both of which are computed on a-surfaces. The Laplacian form is given (using F,, for 
illustrative purposes, with F, and F,  formulated in an identical way) by 

F , , = A ~ V ~ U = A ~  (2 -+- $) . 
For the biharmonic form we have 

Here A ,  and BM are the coefficients for momentum diffision. The coefficients for heat and 
turbulence energy diffusion (AH and B H )  are set equal to that for momentum. Previous work'* shows 
that the use of a biharmonic formulation of diffusion enables the computational noise to be controlled 
without imposing unrealistically high damping on the larger features of the flow. We shall show the 
influences of the different diffusion formulations on internal lee waves later in the paper. 

2.4. Boundary conditions 

velocity and temperature at the sea surface takes the form 
At the sea surface there is no applied wind stress or heat flux, so the boundary condition for 

For the TKE models the sea surface boundary condition states that there is no turbulence flux 
through the sea surface and takes the form 

- 0. i3E _ -  
ag 
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For the two-equation model the length scale at the sea surface is given by 
2 2 14 = zsq , 

where z, is the sea surface roughness length. 
At the sea bed we use a linear bottom friction condition which takes the 

with C, the coefficient of the bottom friction. For the temperature equation 
the sea bed, so 

ar 
aa 

= 0. - 

form 

(304 

there is no flux through 

(30b) 

For the TKE model we use a boundary condition including the balance of the turbulence production, 
dissipation and diffusion given by Xing and D a v i e ~ , ~ ~  namely 

Here AD is the lowest model level height and ti, is the friction velocity. A bottom boundary condition 
for q2 is formed in a similar way, with the length scale specified as the bottom roughness length at the 
sea bed. 

2.5. Set-up of the numerical experiments 

The model domain is identical with that used by CH93, namely a straight channel with inflow at its 
south end and outflow at the north and with solid side walls at the west and east. Along the side wall 
boundaries the component of flow normal to the wall and the heat flux are taken as zero. At the open 
boundaries we must ensure that the imposed inflow and any disturbances generated in the model 
domain pass through the boundaries (in particular the downstream boundary) without serious 
reflection. This is achieved by applying an Orlanski radiation boundary condition for the temperature, 
with enhanced horizontal diffusion near the boundary zone. A simple radiation boundary condition is 
used for the barotropic flow (sea surface elevation). The numerical results show that with these open 
boundary conditions the influence of the boundary on the internal area is negligible. The location of 
the seamount was identical with that used by CH93 and its form is described later. 

The initial objective of the calculations was to ensure that the finite difference model developed 
here was as accurate as the spectral model of CH93 and then to take advantage of the fact that with 
the finite difference approach we can examine the enhancement of the turbulence mixing downstream 
of the seamount due to the generation of internal lee waves. The magnitude of the various terms in the 
turbulence energy equations will also be examined in order to understand the mechanisms producing 
the enhanced levels of turbulence. In addition, comparisons will be made with the simpler models to 
see whether the main physical processes can be reproduced by these computationally less expensive 
models. Finally, the near-bottom processes, which are of importance to sediment transport and 
biological processes, will also be discussed. 

In most of the numerical experiments presented in this paper, the bottom topography is an isolated 
bell-shaped circular seamount, so the water depth h(x, y )  takes the form 
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where r2 = (x - xo)2 + 0, - yo)2, u is the horizontal scale of the seamount, h, is the maximum 
seamount height centred at (xo,yo) and Ho is the water depth over the flat bottom. This profile has 
been widely used in the study of the atmospheric flow over mountains, since it is convenient for a 
linear analytic solution because of the simple form of the Fourier transformation.8 

A Gaussian-shaped seamount has been used in the oceanographic literature.'5336 A comparison will 
be made in this paper with different seamount profiles in order to examine their influence on internal 
waves and associated turbulence, namely a bell-shaped seamount, a Gaussian-shaped seamount and a 
cosine-squared form of seamount. The Gaussian-shaped seamount takes the form 

h(x, y )  = H, - hoe-"'* (33) 

and the cosine-squared seamount has the form 

h(x,y) = H , - h ,  - 1 +cos - , (3 rG2a .  (34) 

The three different seamount profiles are shown in Figure 1. It can be seen that the cosine-squared 
seamount (as defined by (34)) has the steepest slope near the bottom. The bell-shaped seamount has 
the gentlest slope near the bottom. As we shall see in the next section, this has a significant effect on 
the flow and turbulence mixing near the bottom of the seamount. 

The numerical calculations were carried out using a horizontal grid of 76 x 98 points with a finite 
difference grid of 5 km in both the x- and the y-direction. There are 25 irregular vertical a-levels with 
a relatively higher resolution near the bottom. Each calculation begins from rest. A spatially uniform 
inflow Ui both in the horizontal and vertical is imposed at the southern open boundary and held fixed. 
After about 10 days integration the interior flow reaches the steady state. The time step is 400 s for 
the internal mode and 10 s for the external mode. 

In addition to the form of the seamount, four non-dimensional numbers determine the steady state 
flow, namely the Froude number F = Ui/NHo, with Ui the specified input current, the Burger number 
S = NHo/fu, the fractional seamount height 6 = ho/Ho and the aspect ratio A = &/a.  The Froude 
number defined here can be explained as the ratio of the imposed background velocity to the phase 
speed of the lowest-mode internal wave. The Burger number is a measure of the strength of the 
stratification. A detailed study of the influence of Froude number upon internal lee wave generation 
over a Gaussian seamount can be found in CH93 and has been used to check the model developed 
here and the accuracy of the open boundary outflow condition. In order to determine the accuracy of 
the model and the boundary conditions, an initial series of calculations was performed without 

-100 -50 0 50 100 150 
km 

Figure 1 .  Three different seamount profiles used in experiments: full line, bell-shaped; broken line, Gaussian-shaped; chain 
line, cosine-squared. In this figure the fractional seamount height 6 = ho/Ho is 0.5 
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vertical diffbsion and bottom friction and with only minimum horizontal friction (in order to obtain a 
stable solution), namely the parameter settings used in CH93. Despite the differences in model 
formulation, i.e. the finite difference approach in the vertical with a free surface used here and the 
spectral model used in CH93, the results were indistinguishable from those of CH93 and hence will 
not be reported here. Having satisfied the primary aim of the numerical calculations, namely to check 
that the model was sufficiently accurate to reproduce the features of CH93, we will be concerned 
in the rest of the paper with addressing problems that could not be considered in CH93, 
namely examining the mixing produced by the internal lee waves and the effects of seamount 
topography upon the mixing. In subsequent calculations we will fix N ,  H,,, a , f  and Vi at 
N = 5.556 x lop4 s-I, Ho = 4500 m, a = 25 x lo3 m,f = lop4 s-' and Ui = 0.5 m s-l. Thus the 
aspect ratio and Burger number are fixed at A = 0.18 and S = 1 respectively, representing a thin 
ocean and a dynamically strong stratification. With Ui = 0.5 m s-' the Froude number is equal to 
0.2. Three different maximum seamount heights h, are used in our experiments, representing small 
(6 = 0.3), medium (6 = 0.5) and large (6 = 0-75) amplitudes of seamount. Therefore the Froude 
numbers F' based on the maximum seamount height (F'= Ui/Nho) are 067, 0.4 and 0.27 
respectively. This seamount-height-based Froude number is a measure of the non-linearity of the flow 
over the seamount. 

3. PJTERNAL LEE WAVES AND WAVE-ENHANCED TURBULENCE MIXING OVER AN 
ISOLATED SEAMOUNT 

3. I .  Linear theory 

Before we discuss the results of the numerical experiment, it is helphl to review some simple 
linear theory on internal lee waves over a seamount. Following CH93, in a simple linear two- 
dimensional (x-z) system, assuming constant uniform inflow velocity Ui and buoyancy frequency N 
and spatically varying velocity u of the form 

where n is the vertical mode number and iih(x) is the horizontal variation in u, the governing equation 
takes the form (dropping the subscript 'h' for convenience) 

where BM is the coefficient of biharmonic diffusion and F is the Froude number. Assuming 
ii - exp(-;lc), the solution for 1 can be obtained by solving a fifth-order polynomial equation of the 
form 

For an inviscid flow (BM = 0) we have the dispersion relation 

2 vlNffo)2 k =  
F2 - l / ( n ~ ) ~  ' 
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where k is the wave number (imaginary part of A). For an internal lee wave to exist, I must be real 
and this requires the flow to be supercritical for mode n, i.e. 

(39) 

For a mode 1 wave F, cz 0.32 and for a mode 2 wave F, x 0-16. Based on these values, in our case 
we expect that internal lee waves cannot be generated, since the Froude number computed with 
Ui = 0.5 m s-' has a value of 0.2, which is below the critical Froude number FJO.32). However, 
CH93 have shown some examples in which mode 1 internal lee waves could be generated near the 
seamount in the case of F = 0.3, which is smaller than F, owing to the local acceleration of the flow 
over the seamount. Consequently, as we will show, internal lee waves are also generated in our 
calculation owing to the non-linear local acceleration. In subsequent calculations we will determine 
the wavelengths of the lee waves in the numerical simulations and compare them with the 
wavelengths computed from linear theory. For the parameters used here, the wavelength for mode 2 
is about 20 km and for mode 3 about 27 km. 

From the solution of (37), CH93 demonstrated that the wavelength (imaginary part of A) an decay 
distance (real part of A) decreased as the Froude number decreased (Figure 14 of CH93). For small F 
the decay distance decreases more rapidly than the wavelength, which indicates that the internal lee 
waves are rapidly dissipated by subgrid-scale horizontal mixing. Consequently, as we will show, the 
parametrization of the horizontal mixing term has a significant influence upon the horizontal variation 
in the internal lee waves. 

3.2. Results from the two-equation turbulence model 

Initially a number of numerical experiments were performed with the two-equation turbulence 
model for the vertical eddy viscosity and diffisivity. For the horizontal diffision we use the 
biharmonic formulation with the same value of the difhsion coefficients for momentum and 
temperature. From the numerical calculations the high seamount requires a larger value of minimum 
horizontal diffusion to obtain a numerically stable solution. We use B,  = BH = 3.2 x lo9 m4 s-I. 
Reducing B, and B, to 1.6 x lo9 m4 s-', the model becomes unstable for the case of 6 = 0.75, 
although it is stable for the cases of 6 = 0.3 and 0.5. 

Figure 2 shows the contours of density (here denoted by c,, where a, = p - po), vertical velocity w 
(see figure caption for details of contour interval) and velocity v (which we will term the streamwise 
velocity since it is in the direction of the imposed flow Ui) taken along the channel from south (left 
side, where the model is forced with the input velocity U,) to north through the centre of the seamount 
after the model has reached a steady state. The spin up to the steady state is achieved by starting the 
model with a horizontal uniform density field with a vertical variation determined by N and a zero 
flow field. Motion in the system is then induced by specifying a uniform inflow velocity Ui at the 
southern end of the channel (the left-hand side of the cross-sections shown in the figure) and 
integrating forwards in time until a new steady state is obtained (approximately 10 days). For the 
calculation shown in Figure 2 the seamount height is 6 = 0-3, which represents a small amplitude of 
seamount. From the vertical velocity plot there is no clear evidence of mode 1 internal lee waves over 
the seamount because of the small Froude number. It seems that both mode 2 and mode 3 internal 
waves exist and the wavelength of the waves is of the order of 25 km, which compared well with the 
linear theory results of about 20 km for mode 2 waves and 27 km for mode 3 waves. It is interesting 
to point out that, owing to the relatively large background current velocity and the small amplitude of 
the seamount, the water flows over the seamount rather than forming a Taylor cap.36 The cold higher- 
density water on the upstream side of the seamount is advected to the crest of the seamount by the 
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Figure 2. Vertical sections of (a) density anomaly denoted by ot = p - pa (kg m-3), (b) vertical velocity w, (c) velocity v 
(termed streamwise velocity) and (d) TKE taken through centre of seamount in direction of external flow. The density contour 
interval is 0.01 kg m-'. The vertical velocity contours begin with f0.25 cm s-' with an interval of 0.5 cm s-' (broken lines 
are downwelling and full lines are upwelling). The streamwise velocity z; is in cm s-l with an interval of 5 cm s-'. The TKE 

contours are in log,,(m2 sK2). A bell-shaped seamount with 6 = 0.3 was used in the calculation 

upwelling and then to the lee side of the seamount by the downwelling. This results in a stronger 
vertical density gradient near the bottom over the lee side of the seamount. The turbulence kinetic 
energy (TKE) is very small in this case and the maximum TKE is of the order of m2 s - ~ .  The 
computed vertical eddy viscosity and eddy diffusivity (not shown here) are smaller than the 
molecular viscosity (1.4 x 

As the seamount height increases, we expect that the amplitude of the internal lee waves will 
increase. In Figure 3 we show the internal lee waves over a seamount with 6 = 0.5. Figure 3(a) shows 
the vertical section of density through the centre of the seamount. The internal displacement of the 
density is much larger in this case than in the case of 6 = 0.3. Figures 3(bHe) show the vertical 
sections of vertical velocity, streamwise velocity, TKE and eddy viscosity respectively taken along 
the channel through the centre of the seamount in the direction of the imposed external flow from 
south (left of figure) to north. Compared with the case of S = 0.3 (Figure 2), the structure of the 
internal lee waves is similar. The wave amplitude, however, is much larger, as shown in the vertical 
velocity plot. The maximum upwelling velocity is about 2.5 cm s- '  in this case, which is two times 
larger than that in the case of S = 0.3. Figure 3(d) shows strong TKE over the lee side of the 
seamount. The maximum TKE, occumng near the upwelling centre, is over lo-* m2 s - ~ .  The 
computed vertical eddy viscosity can be very large in this region, as shown in Figure 3(e), with a 
maximum vertical eddy viscosity of over 1 m2 s- ' .  The vertical eddy diffusivity (not shown here) 
has a similar value. 

m2 s-I). 
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Figure 3. As in Figure 2, but for 6 = 0.5. Figure 3(e) shows the vertical eddy viscosity (contours in loglo(m2 s-I)) 

In Figure 4 we show the contours of horizontal distributions of vertical velocity, TKE and vertical 
eddy viscosity at a depth of 2500 m. The peak upwelling velocity decays from about 2.5 cm s-' on 
the lee side of the seamount to about 1.25 cm s-' at a position 40 km downstream from the 
seamount centre and further downstream to about 0.25 cm s-'. CH93 suggested that this 
downstream decay of internal lee waves is due to two factors-slowing of the ambient current and 
subgrid-scale mixing4oth  of which contribute here. From Figure 4 we note that both the TKE and 
the eddy viscosity have similar distributions to the vertical velocity. The maximum TKE on the lee 
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side is of the order of loK3 m2 s - ~  and decays to m2 s - ~  at 40 km downstream of the seamount 
centre. Similarly, the maximum eddy viscosity is of the order of lo-' m2 s-' on the lee side of the 
seamount and decreases to 

The TKE balance analysis gives us further insight into the processes producing the internal-lee- 
wave-induced turbulence mixing. In the steady state the turbulence energy equation reduces to 

m2 s-' at 40 km downstream from the centre of the seamount. 

A turbulence model using the balance of the fist three terms on the left of the above equation (i.e. 
shear production, buoyancy suppression and viscous dissipation) is often called the Mellor-Yamada 
level 2 closure scheme.'' This form of turbulence energy model is widely used in the literature 
because of the reduced computational overhead37 compared with the full turbulence energy model. 
Here we have used a full prognostic turbulence energy equation since we anticipate the complexity of 
the flow in some of the applications of the model, e.g. steep bottom topography, and also because we 
wish to examine the relative importance of all the terms and compare results with simpler models. 

In Figure 5 we show the vertical sections of various terms in the TKE balance equation (40) taken 
along the channel through the centre of the seamount. On the lee slope of the seamount the main 
balance of the TKE is the vertical shear production (Figure 5(a)) and the viscous dissipation (Figure 
5(c)), both of which have maxima of the order of m3 s - ~ .  The stable stratification always acts 
as a buoyancy suppression term in the TKE balance and has a maximum value of the order of 
loK3 m3 s - ~  (Figure 5(b)). It is interesting to note that the maximum of the suppression due to 
density is on the lee slope where the maximum TKE occurs. In fact, strong vertical mixing and 
upwelling motion reduces the stratification, which should reduce the suppression of turbulence by 

i " ' " " ' ' " ' ~ ' ' " '  I .. 
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Figure 4. Contours of (a) vertical velocity, (b) TKE and (c) vertical eddy viscosity at a depth of 2500 m. The chain circle 
represents a seamount with r = a. The vertical velocity contours begin with f0.25 cm s-' with an interval of 0.5 cm s-1 
(broken lines are downwelling and full lines are upwelling). The interval of TKE and eddy viscosity contours 

is loglo(m2 s-'). A bell-shaped seamount with 6 = 0.5 was used in the calculation 
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Figure 5. Vertical sections of various terms in turbulence energy balance equation (40) taken through centre of seamount (all in 
10glo(m3 s-')): (a) turbulence shear production; (b) density (buoyancy) suppression; (c) viscous dissipation; (d) advection of 

TKE; (e) vertical diffusion; (f) horizontal diffusion. A bell-shaped seamount with d = 0.5 was used in the calculation 

density. The effect due to the increase in the eddy diffhivity, however, is greater than that due to the 
density change. It is also interesting to note that the advection of the TKE has a significant effect on 
the TKE balance, since it is of at least the same order as the density (buoyancy) term. The vertical 
diffusion (Figure 5(e)) of the TKE also has an order of m3 s - ~  in the region of strong internal 
lee waves and hence cannot be neglected. However, the horizontal diffusion (Figure 5(f)) of the TKE 
is much smaller and not particularly important and could be neglected. 
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As the seamount height increases further to 6 = 0.75, there are significant changes in the flow and 
internal lee wave patterns. Figure 6 shows the vertical sections of density, vertical velocity, 
streamwise velocity, TKE and viscosity taken along the channel through the centre of the seamount. 
In this case the flow is more effectively blocked by the seamount compared with the previous cases. 
On the upstream slope the maximum upwelling velocity is about 1.25 cm s-I, compared with the 
maximum upwelling of 1-75 cm s-' in the previous cases. More importantly, the downwelling on 
the lee slope is very small and limited to the upper 300 m of the seamount, with strong upwelling of 
maximum velocity about 3.5 cm s-' occurring on the lee side below 3000 m. The important feature 
of this case is that flow separation occurs on the lee side of the seamount (see Figure 6(c)). The 
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Figure 6. As in Figure 3, but for 6 = 0.75 
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maximum reverse flow velocity is more than 10 cm s-l (in the case of 6 = 0.5, flow separation also 
occurs, although we cannot see it in the vertical section along the channel through the centre of the 
seamount owing to the asymmetric nature of the flow over the seamount). This flow separation is not 
boundary layer separation, since, when we repeat the case using a free slip condition between the 
water and the bottom surface, the flow separation over the lee slope of the seamount still exists. We 
suggest that the water behaves here very much like the atmospheric flow over an obstacle discussed 
by Smolarkiewicz and R~tunno,~* although in our case rotation plays an important role. We shall 
return to this point later in this section. 

The internal lee wave amplitude measured by the vertical velocity is larger in the case of 6 = 0.75 
than in the case of 6 = 0.5. This differs from the results of CH93, who show that the maximum 
amplitude occurs at 6 = 0.5. The reason for this is that we use the same value for the horizontal 
diffusions for different seamount heights. One interesting thing is that the computed TKE and eddy 
viscosity in the case shown in Figures 6(d) and 6(e) are not as large as those in the case of 6 = 0.5. 
For example, the maximum TKE is of the order of m2 s - ~ ,  compared with a maximum TKE of 

m2 s - ~  in the case of 6 = 0.5. The vertical eddy viscosity is in general smaller than that with 
6 = 0.5, although both have a similar value of the maximum (1 m2 s-'). 

In Figure 7 we show plan views of the contours of vertical velocity, TKE and eddy viscosity at a 
depth of 2500 m. From a comparison of Figure 7(a) with Figure 4(a) it is evident that over the lee 
slope the vertical velocity for the case of 6 = 0.75 is larger than for the case of 6 = 0.5 and there is a 
phase difference between the two cases. The maximum upwelling for this case is at about 25 km 
downstream of the seamount centre, whereas in the case of 6 = 0.5 the vertical velocity is much 
smaller. Further downstream the two cases have similar wave patterns. The TKE and eddy viscosity 
plots show that the maxima (of the order of m2 s - ~  for TKE and lo-' m2 s-' for eddy 
viscosity) are located further downstream compared with the case of 6 = 0.5. The second maximum 
centre for TKE and eddy viscosity does not appear in this case, although it can be clearly seen in the 
case of 6 = 0.5. 
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The turbulence energy balance for the case of 6 = 0.75 is shown in Figure 8, which indicates that 
the main TKE balance terms are the shear production of TKE and the viscous dissipation. However, 
compared with the case of 6 = 0.5, these two terms are much smaller, with a maximum of 

m3 sP3 as expected. 
One important feature in this case, however, is the strong turbulence energy advection over the lee 
slope, having a maximum of the order of loP3 m3 s - ~ ,  which is the same order as the shear 
production of TKE. 

m3 sP3. The maximum density suppression term is of the order of 
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Figure 8. As in Figure 5, but for 6 = 0.75 
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The influence of the seamount height on the flow can be hrther explored by showing the density 
and flow near the bottom. The important relevant non-dimensional parameter here is the Froude 
number based on the seamount height, i.e. F' = Ui/Nh,, which is a measure of the non-linearity. 
Existing theories based on the atmospheric flow over mountains are valid only when F' >> 1 (linear 
wave theory7 and F' << 1 (potential flow the01-y~~). Laboratory and numerical methods have been 
used to study the stratified flow over obstacles outside the range of linear theory and potential flow 
t h e ~ r y . ~ ' , ~ ~ ~  Although a detailed study of the small-Froude-number oceanic flow over a seamount is 
beyond the scope of this paper, the numerical results from three different seamount heights 
(corresponding to the seamount-height-based Froude numbers 0.67,0.4 and 0-27) give a flavour of 
this topic. Figures 9-1 1 show the density anomaly (defined by the density minus the initial density), 
relative velocity and flow vectors computed on the lowest model level for different seamount heights. 
In the case of 6 = 0.3 (F' = 0.67, Figure 9) the density anomaly contours basically follow the bottom 
topography, although there is a small distortion downstream of the seamount centre. In the region 
downstream of the seamount, internal lee waves are clearly seen from the relative vorticity contours 
and the flow vectors. Over the seamount the dominant feature is an anticyclonic circulation with a 
maximum anticyclonic vorticity of about 0.7J where f is the Coriolis parameter. As the seamount 
height increases to 6 = 0.5 (F' = 0.4), there are dramatic changes in the flow structure (compare 
Figures 9 and 10). Both positive and negative density anomalies appear over the lee side of the 
seamount, resulting in a pair of vertically oriented vortices. In a study of the non-rotational 
atmospheric flow over mountains, Smolarkiewicz and Rotunno3* found that as the Froude number 
passed below a critical value (in their case 0.5), vertically oriented vortices on the lee side, with a 
zone of flow reversal on the windward side, appeared. They explained the mechanism for the 
generation of the vertically oriented vortices in terms of the tilting of the horizontally oriented 
vortices which are generated by the baroclinic production as the flow passes the obstacle. The role of 
the earth's rotation in our cases produces vortices which are highly asymmetric, with dominant 
anticyclonic vortices (in northern hemisphere), with a maximum anticylonic vorticity of about 1 -3f 
and a maximum cyclonic vorticity of about 0.7J: 
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E 

Figure 9. Contours of (a) density anomaly ut (kg mP3), (b) relative vorticity (in units off) and (c) velocity vectors on lowest u- 
level computed using a bell-shaped seamount with 6 = 0.3 
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These calculations demonstrate qualitatively that the model can accurately represent the non-linear 
processes necessary to generate the various vortices found in laboratory experiments and other 
numerical modelling studies. 

The case of 6 = 0.75 (F' = 0.27) shows further complexity due to the strong non-linearity; in 
particular, eddy shedding appears (Figure 11). Aspects of eddy shedding have been studied by Boyer 
and Zhang43 using laboratory experiments. The fact that the model can accurately represent the eddy- 
shedding process, together with the passage of the eddy through the northern open boundary without 
false reflection, provides confidence in the numerical accuracy of the method. The significant spatial 
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Figure 11. As in Figure 9, but for 6 = 0.75 
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variability found in these calculations suggests that a detailed field measurement programme will be 
required to collect a comprehensive data set for model validation. This problem will be discussed 
later in the paper. 

The bottom friction has a significant influence on the near-bottom flow. Results from a numerical 
experiment using a free slip bottom boundary condition clearly show a pair of vortices over the lee 
side of the seamount; in particular, the maximum cyclonic vorticity, being 1.5f, is almost as much as 
the maximum anticylonic vorticity (Figure 12). This compared with a much smaller cyclonic vorticity 
over the lee side of the seamount in the case of bottom friction (Figure 10). 

This series of calculations has clearly shown that accurate flow fields (in excellent agreement with 
the CH93 functional/spectral model) can be obtained using the finite difference model with an 
irregular grid in the vertical. The analysis of the various terms in the turbulence energy model shows 
that to first order the shear production and turbulence dissipation terms are comparable, although in 
regions of strong vertical density gradient the suppression of turbulence by stable stratification is 
particularly important. However, the terms describing the vertical diffusion of turbulence and its 
advection cannot be neglected, suggesting that a turbulence model in which these terms are omitted 
may not be universally appropriate and could lead to significant errors depending upon the height of 
the seamount. In the next subsection we will examine the accuracy of simpler turbulence models by 
comparison with the solution computed with the full turbulence energy equations. 

3.3.  Results using the one-equation TKE model and Richardson-number-dependent eddy viscosity 

Compared with the two-equation TKE model, the one-equation TKE model is computationally 
more efficient, although the need to specify the turbulence length scale in the model is a 
disadvantage. Using the length scale formulation (20) and inequality (17), we repeat the case of 
6 = 0.5. The computed TKE and eddy viscosity are much larger than those determined with the two- 

Figure 12. As in Figure 10(b), but without bottom friction (free slip bottom boundary condition) 
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Figure 13. Vertical sections of (a) TKE (loglo(m2 sC2)) and (b) vertical eddy viscosity (log,, (m2 s-I)) computed using one- 
equation TKE model. A bell-shaped seamount with 6 = 0.5 was used in the calculation 

equation model (Figures 13 and 14). There is a small change in the internal lee wave amplitude 
measured by the vertical velocity (not shown here), but the overall wave pattern is similar to the 
results of the two-equation model. 

Apart from different empirical constants in these two TKE closure schemes, one important 
difference is that the length scale (20) is not influenced by the density stratification in our one- 
equation model. In the two-equation model used here, the stratification has an influence on both the 
TKE and the length scale. Furthermore, the eddy viscosity and diffusivity are proportional to stability 
functions, defined in (IS) and (16), which are functions of the buoyancy frequency. It seems that in a 
stratified flow the length scale should be modified by the stable ~tratification.~~ As a sensitivity test, 
we modify the length scale (20) using a similar stability function to that defined in (23); thus the 
length scale takes the form 

I ,  = 1(1 + 10Ri)-"*, 
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Figure 15. As in Figure 13, but with length scale modified as in (41) 

where the Richardson number Ri is defined by (25). The computed TKE and eddy viscosity using the 
modified length scale are shown in Figures 15 and 16. Compared with the results from the two- 
equation model shown in Figures 3 and 4, both the TKE and the eddy viscosity are very similar, 
although the computed eddy viscosity is still larger in the one-equation case. 

The method using the Richardson number to compute the eddy viscosity and difisivity (equations 
(21) and (22)) is widely applied in both deep sea and coastal It has major 
advantages in terms of computational cost and often works very well in some cases. It can in essence 
be regarded as the lowest order of the turbulence energy balance in a stratified flow. In our application 
we set A,, = 0.01 m2 s-', B,, = 0-0001 m2 s - ' ,A ,  = 0.001 m2 s-' and B, = 1.4 x lop6 m2 s-' 
(molecular viscosity) in (21) and (22). The constants given here result in a relatively smaller eddy 
viscosity and eddy diffusivity compared with the results from the turbulence models. Therefore the 
internal lee wave amplitude is much larger, with a maximum vertical velocity over 3.5 cm s - ' ,  
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compared with a maximum vertical velocity of about 2.5 cm s-' in the previous cases, although the 
overall wave pattern changes very little. In Figure 17 we show the vertical sections of Richardson 
number and computed eddy viscosity taken through the centre of the seamount. It can be seen here 
that over the lee side of the seamount the Richardson number is very small (Ri < 0.25), indicating 
possible dynamical instability. The Ri = 0.25 contour roughly corresponds to the 10K3 m2 sP2 TKE 
contour from the results of the turbulence model. The computed eddy viscosity is less than 
loP2 m2 s- ' even on the lee side. One important feature using the Richardson-number-dependent 
eddy viscosity and eddy diffusivity is that the eddy diffusivity is in general much smaller than the 
eddy viscosity, even if we use the same value for A,' and Ar2. Figure 18 shows the Richardson number 
Ri and stability functions (Il and (I2 at a depth of 2500 m. In general (I2 is a decade smaller than (Il.  
Compared with the turbulence model results, the minimum Ri (and maximum and @2) is not 
exactly over the area of maximum TKE, but upstream by about 10 km. The reason for this is that the 
Richardson number takes only the local balance of TKE shear production and density suppression 
into account (TKE dissipation being proportional TKE). As shown in the budget of the TKE, the 
advection of the TKE can be significant over the lee side of the seamount and a Richardson number 
approach cannot take this into account. 

This series of calculations has in essence shown that the one-equation turbulence energy model can 
give similar results to the two-equation model provided that the mixing length is modified by a 
stability function depending upon the Richardson number and the mixing length is limited in 
magnitude in a similar way to that used in the two-equation model. This is an interesting result in that 
this model is computationally less expensive than the two-equation model. It also explains the 
success of  simulation^^^'^^ using this simpler model. 

The fact that the main features of the flow were reproduced by using an algebraic Richardson- 
number-dependent viscosity and diffusivity goes some way to explaining the success of this type of 
model, which has mainly been tested by its ability to reproduce large-scale features of the flow. 
However, its inability to reproduce the mixing features found in the turbulence models can be readily 
understood in terms of the detailed analysis of the turbulence energy budget performed earlier. 

In the calculations considered so far, we have concentrated upon the parametrization of the vertical 
diffusion term. In the next subsection we briefly examine the effect of horizontal diffusion upon the 
solution. This is particularly important and complementary to any investigation of the 
parameterization of vertical diffusion, in that there is little point in using a high-order turbulence 
method in the vertical with a physically unrealistic, highly diffusive parametrization in the horizontal. 
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Figure 17. Vertical sections taken through centre of seamount of (a) Richardson number Ri and (b) vertical eddy viscosity 
(log,,(m2 s ~ I ) )  computed using Rz-dependent eddy viscosity formulation 
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Figure 18. Horizontal distributions of (a) Ri, (bj $, and (cj $2 at a depth of 2500 m. A bell-shaped seamount with 6 = 0.5 was 
used in the calculation 

3.4. Sensitivity to the horizontally dSffusion formulations 

Diffusion in nature is an important phenomenon not only in physical but also in biological and 
chemical processes. To understand diffusion, it is necessary for us to understand both the transport 
and mixing processes, an accurate computation of which is important in modelling biological and 
sedimentation phenomena. Unfortunately, a numerical model has its own complex numerical 
diffusion associated with the different numerical methods used to solve the equations. The explicit 
introduction of horizontal diffusion into a model is often for numerical reasons rather than based on 
physical knowledge. It is known that the different formulations of horizontal diffusion can have 
significant influences on the computed flow field, in particular in regions of high density gradients. 
Here two different formulations of horizontal diffusion are used to examine its influence on the 
solutions. 

The previous calculations were all performed using the biharmonic formulation for the horizontal 
diffusion of momentum and temperature, with BM = BH = 3.2 x lo9 m4 s-I. In order to see the 
influence of a different formulation of horizontal diffusion, we perform some numerical experiments 
using the Laplacian form of diffusion. Following Heathershaw et a1.,I8 in a simple one-dimensional 
linear case the relation between AM and B M  is given by 

where Ax is the horizontal resolution and L is the wavelength. For the smallest resolvable wavelength, 
i.e. L = 2 L ,  the same damping for either horizontal diffusion operator is obtained when 

4BM A M  =- 
( L I Z .  

(43) 

With B M  = 3.2 x lo9 m4 SKI and Ax = 5000 m (the value used in the present calculation), this yields 
A M  = 512 m2 s-'. 
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The results from a numerical experiment with A ,  = 510 m2 s-', using the two-equation TJCE 
model and 6 = 0.5, show very strong damping effects on the internal lee waves, with the maximum 
vertical velocity being halved compared with the case of BM = 3.2 x lo9 m4 s-'. Since the internal 
lee wave wavelength is of the order of 25 km, we chose L = 25 km in (42), which yields 
A ,  = 180 m2 s-I. The results using A ,  = 180 m2 s-' and 6 = 0.5 are shown in Figure 19(a). 
Compared with the results using biharmonic horizontal diffusion, the stronger damping effect on the 
internal lee waves, especially further downstream of the seamount, is clearly seen. 

Further numerical experiments were performed with a reduction of the coefficients of horizontal 
difhsion to B, = 1.6 x lo9 m4 s-' and A ,  = 90 m2 s-] . This should have the same damping effect 
on waves with a wavelength of 25 km. The results using the biharmonic formulation of diffusion 
show a larger internal lee wave amplitude, especially in the downstream area (Figure 19(b)). The 
results using the Laplacian formulation of diffusion, however, are very noise (Figure 19(c)). In fact, 
the damping of the smallest resolvable wavelength ( L  = 2Ax) is not sufficient to perform a longer 
numerical integration. These two examples show the advantages of the biharmonic formulation of 
horizontal diffusion in problems involving short-wavelength internal waves. 

These calculations illustrate the importance of using the more accurate and scale-selective 
biharmonic form of the horizontal diffusion term if an improved solution is going to be obtained by 
using a turbulence energy model in the vertical. 

Obviously, in physically realistic simulations of oceanographic flows a detailed description of the 
topography of the seamount is required. In order to understand how accurately the topography must 
be measured in order to validate turbulence energy models against point measurement made in the 
vicinity of seamounts, a sensitivity study of the variations in turbulence in response to changes in 
topography is required. This is performed in the next sub-section. 
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Figure 19. Contours of vertical velocity at a depth of 2500 m computed using (a) Laplacian form of horizontal diffusion, 
A ,  = A ,  = 180 m2 s- , (b) biharmonjc form of horizontal diffusion, B, = B, = 1.6 x lo9 m4 s-', (c) as (a) but with 

A, = A ,  = 90 m2 s- . A bell-shaped seamount with 6 = 0.5 was used in the calculation 
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3.5. Results using diflerent seamount profiles 

All the numerical experiments shown in this paper so far have used a bell-shaped seamount profile. 
As can be seen in Figure 1, compared with the Gaussian-shaped and cosine-squared seamounts, the 
bell-shaped seamount has a relatively gentle slope near the sea bed. Using different profiles, we 
performed hrther numerical experiments on the flow over an isolated seamount in order to study the 
sensitivity of the solution to profile changes. 

The experiments were performed using the two-equation turbulence model and biharmonic 
horizontal difhsion with B, = BH = 3.2 x lo9 m4 s-’. Figure 20 shows the vertical sections of 
vertical velocity, streamwise velocity and vertical eddy viscosity for the Gaussian-shaped and cosine- 
squared seamounts. Compared with the bell-shaped case in Figure 3, there are three important 
features. Firstly, the internal lee wave amplitude measured using the maximum vertical velocity 
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Figure 20. Vertical sections of (a) vertical velocity (contours begin with &0.25 cm s-’ with an interval of 0.5 cm s-I), (b) 
streamwise velocity (cm s-I) and (c) vertical eddy viscosity (loglo(m2 s-I)) taken through seamount centre: left column, 

Gaussian-shaped seamount; right column, cosine-squared seamount 
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increases when using the Gaussian-shaped and cosine-squared seamounts. The maximum upwelling 
velocity over the lee side is about 2.25 cm s-' for the bell-shaped seamount, 2.75 cm s-' for the 
Gaussian-shaped seamount and 4.35 cm s-' for the cosine-squared seamount. Secondly, flow 
separation can be seen over the lee side of the cosine-squared seamount in this vertical section, but 
not for the other two seamount profiles. Thirdly, although the turbulence energy (not shown here) and 
eddy viscosity are similar over the lee side of the seamount, the TKE and eddy viscosity are larger 
over the downstream area between y = 50 and 100 km. More importantly, near the bottom the TKE 
and eddy viscosity are much larger for the Gaussian-shaped and cosine-squared seamounts, 
particularly in the later case. 

These calculations suggest that in any detailed study of the flow and mixing in the region of a 
seamount it will be necessary to accurately determine the geometry and water depth distribution 
associated with the seamount. 

4. CONCLUDING REMARKS 

In the first part of this paper we have described the development of a three-dimensional free surface 
model with a range of turbulence energy submodels for the computation of subgrid-scale mixing. A 
finite difference grid is used in the vertical to discretize the equations and the accuracy of the solution 
is established by comparing results with those computed by CH93.l' 

Calculations are performed over a range of seamount heights to examine the effects of height upon 
the amplitude of the internal lee waves and the magnitude of the resulting turbulence. A range of 
turbulence energy models from complex to simple is used in these calculations. 

The results from the two-equation turbulence model show that the maximum turbulence energy, 
occurring over the lee side of a seamount upwelling area, can be as much as lo-* m2 s - ~ ,  resulting 
in strong turbulence mixing. The computed vertical eddy viscosity and eddy diffusivity coefficients 
have a maximum of about 1 m2 s- '. Such strong mixing must have important influences on chemical 
and biological processes and sediment transport. The one-equation turbulence model shows similar 
results as long as the specified length scale takes account of the influence of the density stratification 
on the mixing length. 

The fact that the one-equation model gives similar results to the two-equation model helps to 
explain the success of the former model in oceanographic simulations.20 Also the computational 
savings associated with this model make it an attractive alternative to the application of the two- 
equation model. 

The turbulence energy budget analysis shows that the main balance terms in the turbulence energy 
equation are the turbulence shear production, turbulence dissipation and density suppression. 
However, the advection of the TKE can locally be of a similar order, in particular for a tall seamount. 
In shallow homogeneous tidal seas Xing and D a v i e ~ ~ ~  did not find this term to be important. 
However, in stratified conditions, particularly in deep water, it is necessary to retain this term. 

From the turbulence energy budget analysis and the comparison with the q2 - q2 z model it is clear 
that there is some inaccuracy in the mixing computed with the algebraic Richardson-number- 
dependent parametrization, although the larger-scale features of the flow can be reproduced with this 
simple parametrization. 

Compared with the atmospheric flow over mountains, in which case the earth's rotational effects 
can often be neglected, the earth's rotation plays a fundamental role in the propagation downstream 
of internal lee waves. However, there are still some similarities in the bottom flow structure, in 
particular over the lee side of the mountain, where a pair of vertically oriented vortices can be found 
in the case of a tall seamount. The earth's rotation results in vortices which are highly asymmetric, 
with dominate anticyclonic vortices (in the northern hemisphere). Also, bottom friction can modify 
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the bottom vortices significantly. Since the magnitude of the bottom fixtion depends upon the bed 
roughness, this suggests that an accurate simulation of the flow in the region of seamounts may 
require not only detailed measurements of current for model validation but also surveys of bed 
roughness to ensure its correct representation in the model. Also, the significant spatial variability of 
the flow and turbulence energy suggests that the limited sets of field data at present collected in the 
vicinity of seamounts may be inadequate to validate models of flow in these regions. In particular, the 
calculations using different-shaped seamounts show the importance of an accurate topographic 
description of these features in order to determine the flow fields and mixing. This also implies that a 
significant survey of water depths in the region of seamounts is required. 

Two different horizontal diffusion formulations are used, namely the biharmonic form and 
Laplacian form. The results of the experiments show that the biharmonic form of horizontal diffusion 
has clear advantages in controlling computational noise without imposing unrealistically high 
damping on the internal lee waves. This suggests that in any large-scale ocean circulation model the 
biharmonic form of horizontal diffusion is preferable in calculations designed to examine small-scale 
features. 
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